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Semiclassical construction of random wave functions for confined systems
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We develop a statistical description of chaotic wave functions in closed systems obeying arbitrary boundary
conditions by combining a semiclassical expression for the spatial two-point correlation function with a
treatment of eigenfunctions as Gaussian random fields. Thereby we generalize Berry’s isotropic random wave
model by incorporating confinement effects through classical paths reflected at the boundaries. Our approach
allows one to explicitly calculate highly nontrivial statistics, such as intensity distributions, in terms of usually
few short orbits, depending on the energy window considered. We compare with numerical quantum results for
the Africa billiard and derive nonisotropic random wave models for other prominent confinement geometries.
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In mesoscopic quantum systems many of the relevargeveral papers appeared, where boundary effects have been
physical phenomena can be described in the mean field amcorporated into RWM approaches, however for specific ge-
proximation. In the semiclassical regime, characterized bymetries[12—-15 only or in a qualitative way}8]

(Fermi) wave lengths considerably smaller than the system We construct a RWM which allows one to incorporate
size, challenges to theory are then posed owing to the arisingffects of arbitrary confinements including Dirichlet-,
complexity of the single-particle wave functions involved. In Neumann-, and mixed boundary conditions in both billiard
view of the correspondence principle their structures dependnd smooth systems. To this end, we keep the Gaussian
sensitively on phase space properties of the correspondirgiructure of the theory as presented in Refs. 3, 8, 17, and 18,
classical systenfil]. This has called for an increasing theo- but achieve a nonisotropic generalization by using a semi-
retical investigation of statistical properties of eigenst@®ds classically exact expression for the two-point correlation
since the seminal work by Ber3]. This is of far more than function in terms of nondirect trajectories being reflected at
theoretical interest as wave function fluctuations govern dahe boundariegextending an important previous wofk8).
variety of physical processes such as, e.g., photoabsoprtidoth ingredients of our approach, the local Gaussian conjec-
of atoms and molecules or the measured conductance peakse and the semiclassical two-point correlation, will be nu-
statistics in quantum dof#l]. Wave function statistics enter- merically tested and confirmed.

ing into interaction matrix elements influence spectral prop- Defining the ensemhleéWe focus on two-dimensional
erties of interacting quantum do{&—8]. Scanning probe clean, closed systems with time reversal symmgis). We
techniques and microwave experiments allow one to directlgonsider energy averages over a seNgfnormalized solu-
uncover the spatial structure of waves on mesoscopic scaléi®ns () of the Schrédinger equation with nondegenerate
[9]. energieskE, lying inside an intervaW=[e- Se/2,e+ 5el 2].

Berry conjectured3] that chaotic wave functions behave, |n Thomas-Fermi approximatiomy,=(277%) 25eQ(e) with
with respect to their statistical properties, as Gaussian rarg(e) the volume of the energy shell. We assudee<1,
dom fields, and arguments coming from semiclas$ls  hich is always achieved in the semiclassical limit we are
quantum ergodicity10], and information theoryl1] support  interested in. Considering such energy averages is standard
this Gaussian hypothesis. When supplemented with a Bessgl gisorder-free mesoscopic systems as they allows for ran-
type spaual two-point correlation function, the resulting gom matrix approachef20]. Moreover, experiments often
theory is known as Berry’s random wave mod®WM),  inyolve averages over finite energy windows. In particular,
since it is equivalent to consider the wave function as a range averaged eigenfunction intensity to be considered is pro-
dom superposition of plane waves with locally fixed waveportional to the local density of states, relevant to many ex-

number magnitude. The RWM provides universal, systtMpariments such as scanning probe, quantum transport, photo-
independent results consistent with random matrix theor)ébsorption and ionization measurements.

(RMT). It constitutes the most widely used statistical de- At 3 fixed positioni'=(x,y) we will probe wave function
scription of chaotic eigenfunctions, as it has been eXtremelﬁmplitudes by means of a functidf(u,)=F((F)) which

successful in predicting bulk or spatially averaged quantitiesq .+ ates when varving. and the corresponding sta
However, obviously, the RWM does not account for effectsinusidléw V\\I/\é defi\;e)ilhggpectral averageFI%fatIng J,L.(tf‘;“

of confinement pqtentials whi.ch pose additional constra!ntsE 1INSe ow F((P). An important example is the distri-
to the wave functions, reducing their randomness, particu- . nS T

larly in the spatial region close to the boundaries. This facPUtlon of intensities

strongly diminishes the range of applicability of the usual 1

RWM, since in many experiments the wave function near the H(w;r) = Ne 2w [g(DP). 1)
boundary is particularly relevarie.g., when measuring tun- WEneW

nel rates, the local density of states at surfaces or boundarieBhis is easily generalized to higher-order statistics such as

or the conductance by attaching lepddence, very recently the spatial correlation intensities, Y(w;,W,;f7,)
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=1/NwZg, cw W1~ [¥n(FD)[?) 8w, = [4(F)|?), and to func-

tions F(U) depending not only on the eigenfunctions but also

on their derivates of any order

= E F(up(Fp), ..

NWE eW

N

f(rlv l vur’;/l(FM))y (2)

where ug(f;) = aaayaz//n(x,,yl) with integersl,,m,. If there

are J different positions among the sef, . rM, we call
F(Fy,...,fy) a J-point statistics. In this paper, a central
guantity is the two-point correlation function

R 1 IR

R(r;,f}) = N > (YT

WE,eW
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FIG. 1. Integrated distributiofP(w)=[1(w;r)dr. The symbols

since the average of any expression bilinear in the wavare exact quantum results for the kicked rotor using @, the

function can be expressed through this correlation.

The local Gaussian conjecturésing the exact probabil-
ity distribution P(0) =1/Ny2Zg_cw 8(U-Uy,) the statisticg2)
can be calculated a&(r, ... ,ry) =/, F(O)P(G)dd. Instead,

the local Gaussian conjecture for the statistics of eigenfunc-

tions of classically chaotic quantum systeal@ims that the

dashed line is the Porter-Thomas distribut®#T(w) and the solid

line is f15(w;r)dr with 1%(w,F) from Eq. (4) and position depen-
dent correlation3) obtained from quantum mechanical numerical
results for the wave functions. The local Gaussian assumption ad-
equately describes the bulinse) and tails beyond the RMT result.

energy ensemble is described as a Gaussian stationary prfgtator. As shown in Fig. 1 the exact calculatiqisgmboly

cess. More precisely, this means to assuinethe weak
sensg P(U)=PC(0) with

PS(0) = (Zw)‘M/Z(detC)‘”Zexp<— %J(c—l) ﬁ) ,

where the correlation matrixC=C(r,...,I;) has entries

show distinct deviations from the Porter-Thomas distribution
PRMT(Aw) = (27mw) %™ (dashed lingboth in the tails and
body (insed. If we use instead/1(w;r)dr with the local
distribution (4) and use the numerical values of the wave
functions to calculate the correlatiqi®) the agreement is
impressive(solid line). That is, if we use the numerically

Cap=1/NwZg cw Uy “uf. Since all these entries consist of av- exact two-point correlation function, deviations from univer-
erages over quantities bilinear in the eigenfunctions, theality [22] are perfectly incorporated in the Gaussian theory

knowledge of the two-point correlation functiai3) com-

through spatial fluctuations of the correlation matrix.

pletely determines, under the Gaussian assumption, the ma- Semiclassical construction of the correlation matihhe
trix C and all statistical properties. Versions of this conjec-above scheme critically depends on how precid(i, ;)

ture have also been used to describe scarring efféttsnd
tunneling rateg§11].

Applying this approach to the intensity distribution
I(w;r), the matrixC reduces to a single entig; ;=R(r,r).

Using the above expression f&u) we find
1
Lot )
V2mWRI(T,T)

Glyny 7\ — w

Hwin) 2R(F,F)
Due to the boundaryR(r,r) will depend onr (as will be
discussed in Fig. )2 This constitutes aonisotropicgenerali-
zation of the(isotropig Porter-Thomas distribution, given by
R(r,r)=1/A for a billiard of areaA.

The intensity correlationY(wy,w,;fy,,), involves a 2

X 2 matrix with elements; ;=R(r;,r;). The Gaussian inte-
grals then give the nonisotropic generalization

(4)

It
N VW W-C
YO (W, Wa; Fy, o) = ,—COS"( L2 1'2)
2m\wyw, detC detC

Cq (W, + C, JW.
><exp<— 1,1W2 + Cp JWq
2 detC

of the distribution studied if16,17.

To check our main assumption, the position-depende
Gaussian conjecturéd), for a generic chaotic system, we
have computed the integrated intensity distributiBtw)
=[1(w;r)dr based on numerical resulf&1] for the kicked

©)

can be calculatef3]. This is a serious issue in the theory of
chaotic quantum systems where no analytical expressions for
the eigenfunctions exist, and approximate methods are re-
quired. It turns out tobe convenient to expreBe’;,r;)
through the Green functio&(r;,r;; E+i0")

Im G(r;,f;E+i0")dE
7TNW e-del2

R(F,,F) = (6)

since a variety of approximations exists f6r

We start from the the exact multiple reflection expansion
of the Green function24] and consider the two leading
terms,G=G@+GY, to calculateR(f}, ;). Here G repre-
sents all quantum paths betwelerandr hitting the bound-
ary once(including nonspecular reﬂect|o)1andG(O denotes
the contribution from the direct path joining andr, The
corresponding isotropic contrlbutloﬁ's(r,,r) to R is ob-
tained by means of the short-time propagator. For small dis-
tancesq—|r ~T; | [25] it is evaluated at the mean potential

n\t/(Q) for a local wave numbefik=[2m(e-V(Q))]*? with
mass m and Q=(F;+F, )12 as GO=-im/(2#?)(I5(ka)
+iYo(k) (Jg, Yo the Bessel and modified Bessel functipns
For g— 0 Eg.(6) then gives Berry’s result
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FIG. 2. Two-point correlation functioR(f",r) andR(0,r) (right
insey for I’ pointing along the line indicated in the Africa billiard
(left insed. The symbols mark numerical quantum resultsRpEQ.

(3) [30]. The thin lines depict the semiquantum prediction employ-
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conjectured to be valid also for the ballistic cd48] which
corresponds to the cadé&x)=1. Our result including the
damping function is, however, conceptually superior for both
practical and theoretical reasons: In practigecontrols the
maximum orbit length to be considered which otherwise
must be artificially set to the Heisenberg time, an extremely
long time in classical terms that makes explicit calculations
hopeless. Theoretically,(x) makes the resuli8) compatible
with the definition(3) [29] which is essential to cope with
the normalization problerf27].

The use ofRS, (7), is adequate for an additional spatial

average, since for fixe@ the integration over the relative
positiond in any small region will contain the continuous set
of paths joiningr; with f;+q directly and the contribution
from nondirect paths isolated in chaotic systems. Hence in
the semiclassical limit the spatial integration over the con-
tinuous set of direct paths yields the isotropic result as the
dominant contribution.

On the contrary, for a pure energy average the contribu-

ing Eq.(6) where the Green function is approximated by a sum ovefjon to R from nondirect paths is of the same semiclassical

paths, including diffraction effects, with at most one reflection at
the boundary. The dashed lines show the isotropic RWM régult

R(f;, ) = [27mm/Q(€)1o(ka). ()

order as that from direct paths. However, the window gkie
determines the maximum length of the nondirect paths con-
tributing to the correlation function. The major step beyond
the isotropic case is to consider an energy window such that
only the direct and shortest nondirect paths significantly con-

It can be obtained using a number of equivalent consideryinyte to R, which is also particularly experimentally rel-

ations[3,18,26,10 and defines the isotropic RWM.

The power of the representatios) for R(i;,r;) combined

evant.
To this end we specify the nondirect paths more precisely.

with the Green function expansion is demonstrated for then pijlliards the first nondirect contribution is given by a sum

Africa billiard [28] (left inset of Fig. 3. The numerical
evaluation ofR(f", ) (Fig. 2) andR(0,r) (right inset in Fig. 2

2p R(p)(ﬂ,ﬂ) over usually few classical trajectorigshitting
the boundary once. For given initial and final positions;

wit_hin.this approximatﬁon is extremely fast qnd the re_sultseach one-bounce pathis uniquely characterized by the po-
(thin lines show con5|de_rable agreement Wlth_ numerically gjtion f, where it is reflected. The path length lis=L;,
exact, but time consuming quantum mechanical referencq=|_jp with L,=|r;=fp|, Lj,=|f;~F}|. Denoting byx, and 6,

calculationgsymbolg. The boundary effectie.g., the oscil-
lations in R(F,r)] are adequately incorporated in the one-

the local boundary curvature and reflection angleF,;;tta
simple calculation yields

bounce treatment, but evidently beyond the isotropic RWM

[Eq. (7), dashed lingls which yields in this caseR(r,r)
=1/m.
In the semiclassical limit the terms in the multiple reflec-

tion expansion can be further approximated by the respective

semiclassical  Green  function [1] Gqr;.f};E)
=(iﬁ\fﬁ)‘12y|Dy|1’2exp(i/ﬁsy—i,uyw/z) where y now
labels theclassical paths joiningr; with rj. D, and u,, are
classical quantities slowly varying with energy, and
S,(fi.rj;E)=/,p-dq is the classical action along the path.
For energy windows withse/e<1 the action can be ex-
panded asS,(E)=S,(e)+T,de/2. The energy integrai6)
then yields the two-point correlation function

Z_mz r

BEUChs (
X cod$S,(r,fj;e)/h — 2]

P

RIFLF) :
w

/
>|2ﬂﬁDy|12

(8

in terms of classical paths. In E@®), T, is the traversal time
of path y, I'(x)=sin(x)/x and 7y=2%/ de is a characteristic
cutoff time associated with the windoW. Equation(8) is

KL,& LioL: ~1/2
R(p)(ﬁ,ﬂ) =~ F<_lﬁ) 2Kp<_'P_JP_> -1
chos Op

9

« T )
Av2mkL, S<kLp 2t
Here ¢, takes into account the boundary conditions at the
reflection point, as given, e.g., in Ref. 31.

R(F}, 1) =RS(f;,Fj) +=, RP(f}, 1), together with the semi-
classical expressiong) and(9), provide the entries for the
correlation matrixC, from which arbitrary statistical mea-
sures[such ad, (1), andY, (5)] for the wave functions can
be deduced for the nonisotropic case. Moreover, this semi-
classical correlation yields closed analytical expressions for
statistical quantities for chaotic systems such as the stadium-,
cardiod- , or Sinai billiard, since in these cases all the param-
eters required are readily calculated from geometrical con-
siderations.

The approach is easily generalized to include Aharonov-
Bohm flux lines or smooth boundary potentials.

Microscopic derivation of nonisotropic random wave

similar to the correlation derived for disordered systems andnodels We demonstrate the power of the semiclassical
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scheme outlined above by computing further wave functiorboundaries or very shod(r) the semiclassical results are the
correlators for selected, representative examples. First wiarge k limits of the integral expressions given in Ref. 12.
show the role of the confinement by considering points The Dirichlet and Neumann cases studied in Ref. 13 are
close to the billard boundary. IfL2] this is treated by ap- particular cases of Eq10) with a=0 anda=/2. The re-

proximating the boundary by an infinite straight ligey, ; ; ; ;
and considering an ensemble of random superpositions ca‘ults for a wedgg15] with opening/n (n intege) is also

S . o erived in the present scheme by taking the shoriedas-
?ﬁlj;/?ﬂvl?:zﬁ(%?(;)ingg)llrl?yt:%_mlz( eerde k;m:g d:rypg(s)ir:icg:f)n sical paths hitting alternatively the edges of the wedge. We
—J0

dependent parameter akdhe local wave number. By en also recover the largle form of the correlation functiofil4]
ser%ble aveFr)age a variety of two-point correlatioﬁs VB\//as detor an infinite potential ramp, using only one classical trajec-
rived in Ref.[12] and used to calculate specific statistical _tory.|Our de”;"'f."i.“ Olf these ctgrrelatlon functions does not
observables. To illustrate our method and for the sake oﬁnv_lcf ve any statistica azsumg 'ﬁn ficient
comparison we consider just one such average, name% 0 summarize, we showed how to efficiently treat wave

(¥ (ay (M). In terms of the two-point correlation function nction statistics for closed systems by merging statistical
. _ S with semiclassical concepts. We demonstrated that all known
it reads (y(F)oy(1))=1/2(dy, +3y JR(F;,F)ly =y =y Close to P

the boundary only the direct and the shortest nondirect patfﬂto us rejullts [12-19 t_forl specific, r}omsotroplc rlandom h
contribute. For mixed boundary conditions the extra phasé‘vave Models are particular cases of the general approac
$, in Eq. (9) is given semiclassically{31] by .= presented here. It provides closed analytical expressions for
_5 arctafitana cos 6,). Substitution into Eq(9) giveg the Statistical measures in terms of geometrical quantities and

approximate correlation function close to an arbitrary bound-bu'ld.s.the framewqr k for Incorporating arbitrary boundary
ary. To leading order itk we get conditions and confinement geometries.
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Condensed Matter” of theDeutsche Forschungsgemein-
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