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We develop a statistical description of chaotic wave functions in closed systems obeying arbitrary boundary
conditions by combining a semiclassical expression for the spatial two-point correlation function with a
treatment of eigenfunctions as Gaussian random fields. Thereby we generalize Berry’s isotropic random wave
model by incorporating confinement effects through classical paths reflected at the boundaries. Our approach
allows one to explicitly calculate highly nontrivial statistics, such as intensity distributions, in terms of usually
few short orbits, depending on the energy window considered. We compare with numerical quantum results for
the Africa billiard and derive nonisotropic random wave models for other prominent confinement geometries.
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In mesoscopic quantum systems many of the relevant
physical phenomena can be described in the mean field ap-
proximation. In the semiclassical regime, characterized by
(Fermi) wave lengths considerably smaller than the system
size, challenges to theory are then posed owing to the arising
complexity of the single-particle wave functions involved. In
view of the correspondence principle their structures depend
sensitively on phase space properties of the corresponding
classical system[1]. This has called for an increasing theo-
retical investigation of statistical properties of eigenstates[2]
since the seminal work by Berry[3]. This is of far more than
theoretical interest as wave function fluctuations govern a
variety of physical processes such as, e.g., photoabsoprtion
of atoms and molecules or the measured conductance peaks
statistics in quantum dots[4]. Wave function statistics enter-
ing into interaction matrix elements influence spectral prop-
erties of interacting quantum dots[5–8]. Scanning probe
techniques and microwave experiments allow one to directly
uncover the spatial structure of waves on mesoscopic scales
[9].

Berry conjectured[3] that chaotic wave functions behave,
with respect to their statistical properties, as Gaussian ran-
dom fields, and arguments coming from semiclassics[3],
quantum ergodicity[10], and information theory[11] support
this Gaussian hypothesis. When supplemented with a Bessel-
type spatial two-point correlation function, the resulting
theory is known as Berry’s random wave model(RWM),
since it is equivalent to consider the wave function as a ran-
dom superposition of plane waves with locally fixed wave
number magnitude. The RWM provides universal, system-
independent results consistent with random matrix theory
(RMT). It constitutes the most widely used statistical de-
scription of chaotic eigenfunctions, as it has been extremely
successful in predicting bulk or spatially averaged quantities.
However, obviously, the RWM does not account for effects
of confinement potentials which pose additional constraints
to the wave functions, reducing their randomness, particu-
larly in the spatial region close to the boundaries. This fact
strongly diminishes the range of applicability of the usual
RWM, since in many experiments the wave function near the
boundary is particularly relevant(e.g., when measuring tun-
nel rates, the local density of states at surfaces or boundaries,
or the conductance by attaching leads). Hence, very recently

several papers appeared, where boundary effects have been
incorporated into RWM approaches, however for specific ge-
ometries[12–15] only or in a qualitative way.[8]

We construct a RWM which allows one to incorporate
effects of arbitrary confinements including Dirichlet-,
Neumann-, and mixed boundary conditions in both billiard
and smooth systems. To this end, we keep the Gaussian
structure of the theory as presented in Refs. 3, 8, 17, and 18,
but achieve a nonisotropic generalization by using a semi-
classically exact expression for the two-point correlation
function in terms of nondirect trajectories being reflected at
the boundaries(extending an important previous work[18]).
Both ingredients of our approach, the local Gaussian conjec-
ture and the semiclassical two-point correlation, will be nu-
merically tested and confirmed.

Defining the ensemble. We focus on two-dimensional
clean, closed systems with time reversal symmetry[19]. We
consider energy averages over a set ofNW normalized solu-
tions cnsrWd of the Schrödinger equation with nondegenerate
energiesEn lying inside an intervalW=fe−de/2 ,e+de/2g.
In Thomas-Fermi approximation,NW=s2p"d−2deVsed with
Vsed the volume of the energy shell. We assumede/e!1,
which is always achieved in the semiclassical limit we are
interested in. Considering such energy averages is standard
for disorder-free mesoscopic systems as they allows for ran-
dom matrix approaches[20]. Moreover, experiments often
involve averages over finite energy windows. In particular,
the averaged eigenfunction intensity to be considered is pro-
portional to the local density of states, relevant to many ex-
periments such as scanning probe, quantum transport, photo-
absorption and ionization measurements.

At a fixed positionrW=sx,yd we will probe wave function
amplitudes by means of a functionFsund=F(cnsrWd) which
fluctuates when varyingEn and the corresponding statecn
inside W. We define the spectral average ofF at rW as FsrWd
;1/NWoEnPW F(cnsrWd). An important example is the distri-
bution of intensities

Isw;rWd ;
1

NW
o

EnPW

dsw − ucnsrWdu2d. s1d

This is easily generalized to higher-order statistics such as
the spatial correlation intensities, Ysw1,w2; rW1,rW2d
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;1/NWoEnPW d(w1− ucnsrW1du2)d(w2− ucnsrW2du2), and to func-
tionsFsuWd depending not only on the eigenfunctions but also
on their derivates of any order

FsrW1, . . . ,rWMd ;
1

NW
o

EnPW

F„un
1srW1d, . . . ,un

MsrWMd…, s2d

where un
asrWid=]xi

la]yi

macnsxi ,yid with integers la ,ma. If there
are J different positions among the setrW1, . . . ,rWM, we call
FsrW1, . . . ,rWMd a J-point statistics. In this paper, a central
quantity is the two-point correlation function

RsrWi,rW jd ;
1

NW
o

EnPW

cnsrWidcnsrW jd s3d

since the average of any expression bilinear in the wave
function can be expressed through this correlation.

The local Gaussian conjecture. Using the exact probabil-
ity distribution PsuWd=1/NWoEnPW dsuW −uWnd the statistics(2)
can be calculated asFsrW1, . . . ,rWMd=e−`

` FsuWdPsuWdduW. Instead,
the local Gaussian conjecture for the statistics of eigenfunc-
tions of classically chaotic quantum systemsclaims that the
energy ensemble is described as a Gaussian stationary pro-
cess. More precisely, this means to assume(in the weak
sense) PsuWd=PGsuWd with

PGsuWd = s2pd−M/2sdet Cd−1/2expS−
1

2
uWsC−1duWD ,

where the correlation matrixC=CsrW1, . . . ,rWJd has entries
ca,b=1/NWoEnPW un

aun
b. Since all these entries consist of av-

erages over quantities bilinear in the eigenfunctions, the
knowledge of the two-point correlation function(3) com-
pletely determines, under the Gaussian assumption, the ma-
trix C and all statistical properties. Versions of this conjec-
ture have also been used to describe scarring effects[2] and
tunneling rates[11].

Applying this approach to the intensity distribution
Isw; rWd, the matrixC reduces to a single entryc1,1=RsrW ,rWd.
Using the above expression forPsud we find

IGsw;rWd =
1

Î2pwRsrW,rWd
expS−

w

2RsrW,rWd
D . s4d

Due to the boundary,RsrW ,rWd will depend onrW (as will be
discussed in Fig. 2). This constitutes anonisotropicgenerali-
zation of the(isotropic) Porter-Thomas distribution, given by
RsrW ,rWd=1/A for a billiard of areaA.

The intensity correlation,Ysw1,w2; rW1,rW2d, involves a 2
32 matrix with elementsci,j =RsrWi ,rW jd. The Gaussian inte-
grals then give the nonisotropic generalization

YGsw1,w2;rW1,rW2d =
1

2pÎw1w2 det C
coshSÎw1w2c1,2

det C
D

3expS−
c1,1w2 + c2,2w1

2 detC
D s5d

of the distribution studied in[16,17].
To check our main assumption, the position-dependent

Gaussian conjecture(4), for a generic chaotic system, we
have computed the integrated intensity distributionPswd
=eIsw; rWddrW based on numerical results[21] for the kicked

rotator. As shown in Fig. 1 the exact calculations(symbols)
show distinct deviations from the Porter-Thomas distribution
PRMTsAwd=s2pwd−1/2e−w/2 (dashed line) both in the tails and
body (inset). If we use insteadeIGsw; rWddrW with the local
distribution (4) and use the numerical values of the wave
functions to calculate the correlation(3) the agreement is
impressive(solid line). That is, if we use the numerically
exact two-point correlation function, deviations from univer-
sality [22] are perfectly incorporated in the Gaussian theory
through spatial fluctuations of the correlation matrix.

Semiclassical construction of the correlation matrix. The
above scheme critically depends on how preciselyRsrWi ,rW jd
can be calculated[23]. This is a serious issue in the theory of
chaotic quantum systems where no analytical expressions for
the eigenfunctions exist, and approximate methods are re-
quired. It turns out tobe convenient to expressRsrWi ,rW jd
through the Green functionGsrWi ,rW j ;E+ i0+d

RsrWi,rW jd =
1

p

1

NW
E

e−de/2

e+de/2

Im GsrWi,rW j ;E + i0+ddE s6d

since a variety of approximations exists forG.
We start from the the exact multiple reflection expansion

of the Green function[24] and consider the two leading
terms,G.Gs0d+Gs1d, to calculateRsrWi ,rW jd. HereGs1d repre-
sents all quantum paths betweenrWi and rW j hitting the bound-
ary once(including nonspecular reflections) andGs0d denotes
the contribution from the direct path joiningrWi and rW j. The
corresponding isotropic contributionRissrWi ,rW jd to R is ob-
tained by means of the short-time propagator. For small dis-
tancesq= urWi −rW ju [25] it is evaluated at the mean potential

VsQW d for a local wave number"k=f2mse−VsQW ddg1/2 with

mass m and QW =srWi +rW jd /2 as Gs0d=−im/ s2"2d(J0
+skqd

+ iY0skqd) (J0,Y0 the Bessel and modified Bessel functions).
For q→0 Eq. (6) then gives Berry’s result

FIG. 1. Integrated distributionPswd=eIsw; rWddrW. The symbols
are exact quantum results for the kicked rotor using Eq.(1), the
dashed line is the Porter-Thomas distributionPRMTswd and the solid
line is eIGsw; rWddrW with IGsw,rWd from Eq. (4) and position depen-
dent correlation(3) obtained from quantum mechanical numerical
results for the wave functions. The local Gaussian assumption ad-
equately describes the bulk(inset) and tails beyond the RMT result.
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RissrWi,rW jd = f2pm/VsedgJ0skqd. s7d

It can be obtained using a number of equivalent consider-
ations[3,18,26,10] and defines the isotropic RWM.

The power of the representation(6) for RsrWi ,rW jd combined
with the Green function expansion is demonstrated for the
Africa billiard [28] (left inset of Fig. 2). The numerical
evaluation ofRsrW ,rWd (Fig. 2) andRs0,rWd (right inset in Fig. 2)
within this approximation is extremely fast and the results
(thin lines) show considerable agreement with numerically
exact, but time consuming quantum mechanical reference
calculations(symbols). The boundary effects[e.g., the oscil-
lations in RsrW ,rWd] are adequately incorporated in the one-
bounce treatment, but evidently beyond the isotropic RWM
[Eq. (7), dashed lines] which yields in this caseRsrW ,rWd
=1/p.

In the semiclassical limit the terms in the multiple reflec-
tion expansion can be further approximated by the respective
semiclassical Green function [1] GscsrWi ,rW j ;Ed
=si"Î2pi"d−1oguDgu1/2exps i / "Sg− imgp/2d where g now
labels theclassicalpaths joiningrWi with rW j. Dg and mg are
classical quantities slowly varying with energy, and
SgsrWi ,rW j ;Ed=egpW ·dqW is the classical action along the path.
For energy windows withde/e!1 the action can be ex-
panded asSgsEd.Sgsed+Tgde/2. The energy integral(6)
then yields the two-point correlation function

RsrWi,rW jd .
2m

Vsedog

GSTg

tW
Du2p"Dgu1/2

3cosfSgsrWi,rW j ;ed/" − mgp/2g s8d

in terms of classical paths. In Eq.(8), Tg is the traversal time
of path g, Gsxd=sinsxd /x and tW=2" /de is a characteristic
cutoff time associated with the windowW. Equation(8) is
similar to the correlation derived for disordered systems and

conjectured to be valid also for the ballistic case[18] which
corresponds to the caseGsxd=1. Our result including the
damping function is, however, conceptually superior for both
practical and theoretical reasons: In practicetW controls the
maximum orbit length to be considered which otherwise
must be artificially set to the Heisenberg time, an extremely
long time in classical terms that makes explicit calculations
hopeless. Theoretically,Gsxd makes the result(8) compatible
with the definition(3) [29] which is essential to cope with
the normalization problem[27].

The use ofRis, (7), is adequate for an additional spatial

average, since for fixedQW the integration over the relative
positionqW in any small region will contain the continuous set
of paths joiningrWi with rWi +qW directly and the contribution
from nondirect paths isolated in chaotic systems. Hence in
the semiclassical limit the spatial integration over the con-
tinuous set of direct paths yields the isotropic result as the
dominant contribution.

On the contrary, for a pure energy average the contribu-
tion to R from nondirect paths is of the same semiclassical
order as that from direct paths. However, the window sizede
determines the maximum length of the nondirect paths con-
tributing to the correlation function. The major step beyond
the isotropic case is to consider an energy window such that
only the direct and shortest nondirect paths significantly con-
tribute to R, which is also particularly experimentally rel-
evant.

To this end we specify the nondirect paths more precisely.
In billiards the first nondirect contribution is given by a sum
op RspdsrWi ,rW jd over usually few classical trajectoriesp hitting
the boundary once. For given initial and final positionsrWi, rW j
each one-bounce pathp is uniquely characterized by the po-
sition rWp where it is reflected. The path length isLp=Lip
+Ljp with Lip= urWi −rWpu, Ljp= urW j −rWpu. Denoting bykp and up
the local boundary curvature and reflection angle atrWp, a
simple calculation yields

RspdsrWi,rW jd . GSkLpde

e
DU2kpS LipLjp

Lpcosup
D − 1U−1/ 2

3
1

AÎ2pkLp

cosSkLp −
p

4
+ fpD . s9d

Here fp takes into account the boundary conditions at the
reflection point, as given, e.g., in Ref. 31.

RsrWi ,rW jd=RissrWi ,rW jd+op RspdsrWi ,rW jd, together with the semi-
classical expressions(7) and (9), provide the entries for the
correlation matrixC, from which arbitrary statistical mea-
sures[such asI, (1), andY, (5)] for the wave functions can
be deduced for the nonisotropic case. Moreover, this semi-
classical correlation yields closed analytical expressions for
statistical quantities for chaotic systems such as the stadium-,
cardiod- , or Sinai billiard, since in these cases all the param-
eters required are readily calculated from geometrical con-
siderations.

The approach is easily generalized to include Aharonov-
Bohm flux lines or smooth boundary potentials.

Microscopic derivation of nonisotropic random wave
models. We demonstrate the power of the semiclassical

FIG. 2. Two-point correlation functionRsrW ,rWd andRs0,rWd (right
inset) for rW pointing along the line indicated in the Africa billiard
(left inset). The symbols mark numerical quantum results forR, Eq.
(3) [30]. The thin lines depict the semiquantum prediction employ-
ing Eq.(6) where the Green function is approximated by a sum over
paths, including diffraction effects, with at most one reflection at
the boundary. The dashed lines show the isotropic RWM result(7).
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scheme outlined above by computing further wave function
correlators for selected, representative examples. First we
show the role of the confinement by considering pointsrW
close to the billard boundary. In[12] this is treated by ap-
proximating the boundary by an infinite straight liney=y0
and considering an ensemble of random superpositions of
plane wavescrsrWd satisfying the mixed boundary condition
s]yc

rsrWdsin a+kcrsrWdcosaduy=y0
=0. Here a is a position-

dependent parameter andk the local wave number. By en-
semble average a variety of two-point correlations was de-
rived in Ref. [12] and used to calculate specific statistical
observables. To illustrate our method and for the sake of
comparison we consider just one such average, namely
kcrsrWd]yc

rsrWdl. In terms of the two-point correlation function
it reads kcsrWd]ycsrWdl= 1/2s]yi

+]yj
dRsrWi ,rW jduyi=yj=y. Close to

the boundary only the direct and the shortest nondirect path
contribute. For mixed boundary conditions the extra phase
fp in Eq. (9) is given semiclassically[31] by fp=p
−2 arctanstan a cosupd. Substitution into Eq.(9) gives the
approximate correlation function close to an arbitrary bound-
ary. To leading order ink we get

kcsrWd]ycsrWdl = GS2kdsrWdde

e
D 1

Îu1 − kdsrWdu

k

A

1
ÎpkdsrWd

3sinS2kdsrWd − 2a −
p

4
D , s10d

wheredsrWd is the distance fromrW to the boundary. For flat

boundaries or very shortdsrWd the semiclassical results are the
large k limits of the integral expressions given in Ref. 12.
The Dirichlet and Neumann cases studied in Ref. 13 are
particular cases of Eq.(10) with a=0 anda=p /2. The re-
sults for a wedge[15] with openingp /n (n integer) is also
derived in the present scheme by taking the shortestn clas-
sical paths hitting alternatively the edges of the wedge. We
also recover the largek form of the correlation function[14]
for an infinite potential ramp, using only one classical trajec-
tory. Our derivation of these correlation functions does not
involve any statistical assumption.

To summarize, we showed how to efficiently treat wave
function statistics for closed systems by merging statistical
with semiclassical concepts. We demonstrated that all known
(to us) results [12–15] for specific, nonisotropic random
wave models are particular cases of the general approach
presented here. It provides closed analytical expressions for
statistical measures in terms of geometrical quantities and
builds the framework for incorporating arbitrary boundary
conditions and confinement geometries.
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